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Role of the poles in determining the structure factor of a 
simple fluid 
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t Departments of Mechanical Engineering and Chemistry, State University of New York 
at Stony Brook, Stony Brook, New York 11794, USA 
% Department of Mechanical Engineering, State University of New York at Stony Brook, 
Stony Brook, New York 11794, USA 

Received 9 June 1983 

Abstract. An earlier study of the role of the poles of the function h^(k)  in determining 
details of its inverse Fourier transform h ( r ) ,  the total correlation function of the hard 
sphere fluid, is extended to a consideration of their role in determining the details of the 
structure factor. 

I,n an earlier paper, Perram and Smith (1980) considered the poles of the function 
h( k), the three-dimensional Fourier transform of the toal correlation function h(  r)  
for the hard sphere fluid (HSF) at number density p. This function is related to the 
radial distribution function g( r)  (proportional to the probability density of finding the 
two parti5les in the fluid separated by distance r) for the HSF by h(r)  =g ( r ) -  1. The 
function h( k) has an infinite number of poles in the upper-half complex k-plane, and 
if we denote the nth pole by k ,  = A, +ip,, then symmetry dictates that poles also exist 
at An-ipn, -A,+ipn and -A,-ipn. The large-r asymptotic form of h(r)  is clearly 
given by exp(-p,r) cos(A,r)/r, and we note that A, and p, are functions of p. Perram 
and Smith derived a large-n asymptotic formula to describe accurately A,+ip, for 
the HSF in the Percus-Yevick (PY)  approximation (Percus and Yevick 1958), as well 
as the corresponding quantities for the hard rod fluid (the one-dimensional analogue 
of the hard sphere fluid). 

It is straightforward to see that 

where A, is related to the sum of the residues of 6 ( k )  at k = A, +ipn and k = -A, + ipn.  
Perram and Smith examined the role of the poles k, in determining h( r) by considering 
the truncated series 

Although h(r)  is represented accurately for r a  1.2~7, where w is the hard sphere 
diameter, for quite small N (depending on the density p ) ,  h(r)  is poorly represented 
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in the vicinity of r = (T for any finite N. This is because h( r )  is discontinous at r = (T, 

and is constant ( =  -1) for r <  U. In fact, Perram and Smith demonstrate that, by 
taking the limit N-oo in (2) and using their asymptotic formula for the k,, the 
discontinuity in h( r )  at r = (T is correctly obtained. 

This present paper is complementary to the earlier Perram and Smith paper in that 
we focus on the structure factor S ( k )  given by 

S ( k ) = l + p h * ( k )  (3) 

and examine the role of the poles in determining it. Experimentally, one measures 
S( k) for real k only, whereas the mathematical expression (3 )  is valid for any complex 
k. The remarkable feature of the poles in relation to S( k) is shown in figure 1, where 
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Figure 1. In the bottom half of the figure, the first three poles of h^( k )  for the HSF in the 
PY approximation are shown as circles. The four sets of poles correspond to densities 
7 =0.1, 0.2, 0.3 and 0.4. As 7 increases, the poles move closer to the real-k axis. Also 
shown is the structure factor S( k) at the corresponding densities. The correlation between 
Re(k,d), where k, is the nth pole of h(k) , .and the position of the nth peak in S(k)  is 
indicated by drawing vertical lines k =Re(k,) ,  n = 1, 2, 3 from the poles to S(k)  at the 
same density. 

the structure factor S ( k )  is shown for the HSF at a selection of densities, and the 
A, +ip, are shown for n = 1, 2, 3. (The results displayed in the figures are given in 
terms of the dimensionless density 7 = ( 7 r / 6 ) p a 3 . )  There is a strong and clear correla- 
tion between A,=Re(k,) and k;"", the position of the nth peak in S(k).*In fact, 
A, = k;"", with the agreement improving as the density increases. Since h ( k )  is a 
holomorphic function of the complex variable k (see Copson 1935), the Cauchy- 
Riemann equations imply that a turning point (maximum or minimum) in the plane 
Im( k) = 0 corresponds to a saddle point in the complex k-plane. Thus, the peaks in 
S( k )  for real k are saddle points; this is confirmed in figures 2 to 4 which illustrate 
/ S ( k ) l ,  Re(S(k))  and Im(S(k)) for density 7 =0.4 .  

This observation, although very simple and to some extent obvious once pointed 
out, has not (apparently) been noted previously. It proves to be an illuminating 
observation since we believe that it explains to some extent the well known insensitivity 
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Figure 2. The function IS( k)l for the HSF in the PY approximation at 7 = 0.4 as a function 
of complex k. Along Re( k), (S( k)l reduces to the usual structure factor, since the latter 
is measured experimentally for real k only and is itself real. 
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Figure 3. The function Re(S(k)) for the HSF in the PY approximation at 9 =0.4 as a 
function of complex k. Along Re(k), Re(S(k)) reduces to the usual structure factor. 
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Figure 4. The function Im(S( k ) )  for the HSF in the PY approximation at 7 = 0.4 as a 
function of complex k.  Along both Re( k )  and Im( k ) ,  Im(S(  k ) )  is zero. 

of S ( k )  to details of the potential except in the vicinity of the critical point (where 
S ( k ) + m  at k =0).  Let us consider a pair potential u(r )  with the property 

u ( r )  = uo(r)+ u1(r) (4) 

where uo(r)  can be thought of as the harsh repulsive part of the potential and ul(r)  
the attractive part. (Several prescriptions for the spljt up of u ( r )  are presently in 
use-see Hansen and McDonald 1976.) The poles in h( k )  for a potential of the form 
(4) can be considered as having their genesis either in uo(r)  or u l ( r ) .  The indentification 
of the poles related to U"( r )  can be achieved by calculating S (  k )  for a fluid interacting 
with potential uo(r )  only: these poles will be similar in position to the HSF poles 
described above, will be weak functions of temperatures and will depend on p in much 
the same way that the k, depend on p for the HSF. 

Among the poles which can be attributed to the attractive part of the potential 
u l ( r ) ,  the key pole is the one which lies along the imaginary axis (see, for example, 
Stell 1969 and Perram 1983). It is this pole that causes the divergence of S ( k )  at 
k = 0 at the critical point, since it migrates towards the origin as the fluid approaches 
the critical point. (This pole occurs roughly at iK, where K is the inverse correlation 
length that appears in the scaling form of h( r )  in the near vicinity of the critical point, 
and the approach of K to 0 is described by the critical exponents E and v along the 
critical isotherm and isochore respectively. See, for example, Stell (1969) for a 
discussion of these exponents.) Thus, provided one is far enough from the critical 
point that K > p,,, and at sufficiently high density that the HsF-like poles are close to 
the real-k axis, then S (  k) is seen to be dominated by these HsF-like poles. 

The central role of the poles of h ( k )  in determining S ( k )  suggests that methods 
of solution of the PY approximation relying on truncated expansions of the form (2) 
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(Perram 1983) are likely to require quite small values of N to determine S ( k )  
accurately. Conversely, if h ( r )  contains a substantial discontinuity, h( r )  can be expected 
to be less well represented by such a truncated expansion. (In reference to the 
practicality of this method of solution of the PY approximation, it is worth noting that 
the poles reported earlier (Perram and Smith 1980) for the HSF were obtained by a 
complex Newton-Raphson technique. Using the asymptotic formulae of Perram and 
Smith (1980) for A,, and pn as the initial guess, the poles are located in at most five 
iterates for small n, reducing to two iterates for large n. Computations of A,, and p,, 
for n up to 300 have been performed for various densities using this method.) 
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